Replications Studies in Software Engineering Research

Tamer Abdou, Ph.D.

Industrial Engineering

Ryerson University

Toronto, Ontario

Canada

Wednesday, July 11, 2018
1 Introduction & Terminologies

2 A Set of Guidelines to Follow
 - Information about the original study
 - Information about the replication
 - Comparison of results to original
 - Conclusion Across Studies

3 Types of Replication Studies
 - Same experiment & Same objects
 - Different experiment & Same objects
 - Same experiment & Different objects
Replication Study

- A study that involves sharing information/knowledge so as to ensure consistency between redundant resources, such as software or hardware components¹.

- A study based on the design, methodology and results of previously published research papers².

Replication Study

- A study that involves **sharing information/knowledge** so as to ensure **consistency** between **redundant resources**, such as software or hardware components\(^1\).
- A study based on the **design, methodology** and **results** of **previously** published research papers\(^2\).

Do We Need to Replicate Studies in SE?

- Concerns about the **reliability** of empirical research results are fast becoming endemic and software engineering is no exception.
- **False discoveries** and how likely published experiments report erroneous results.
- Researchers questioned the **prevalence** of reported p-values.
- Concerns about the **variability of results** depending upon which research team performs the work.
- Some studies are **selectively published** based on preferences for particular results.
- There is both a **low probability** of discovering a **true effect** and the parameter of interest has high variance.

Do We Need to Replicate Studies in SE?

- Concerns about the **reliability** of empirical research results are fast becoming endemic and software engineering is no exception.

- **False discoveries** and how likely published experiments report erroneous results.

- Researchers questioned the **prevalence** of reported p-values

- Concerns about the **variability of results** depending upon which research team performs the work.

- Some studies are **selectively published** based on preferences for particular results.

- There is both a **low probability** of discovering a true effect and the parameter of interest has high variance.

Do We Need to Replicate Studies in SE?

- Concerns about the **reliability** of empirical research results are fast becoming endemic and software engineering is no exception.

- **False discoveries** and how likely published experiments report erroneous results.

- Researchers questioned the **prevalence** of reported **p-values**

- Concerns about the **variability of results** depending upon which research team performs the work.

- Some studies are **selectively published** based on preferences for particular results.

- There is both a **low probability** of discovering a **true effect** and the parameter of interest has high variance.

Do We Need to Replicate Studies in SE?

- Concerns about the **reliability** of empirical research results are fast becoming endemic and software engineering is no exception.
- **False discoveries** and how likely published experiments report erroneous results.
- Researchers questioned the **prevalence** of reported **p-values**
- Concerns about the **variability of results** depending upon which research team performs the work.
- Some studies are **selectively published** based on preferences for particular results.
- There is both a **low probability** of discovering a **true effect** and the parameter of interest has high variance.

Do We Need to Replicate Studies in SE?

- Concerns about the **reliability** of empirical research results are fast becoming endemic and software engineering is no exception.
- **False discoveries** and how likely published experiments report erroneous results.
- Researchers questioned the **prevalence** of reported **p-values**
- Concerns about the **variability of results** depending upon which research **team performs the work**.
- Some studies are **selectively published** based on preferences for particular results.
- There is both a **low probability** of discovering a **true effect** and the parameter of interest has high variance.

Do We Need to Replicate Studies in SE?

- Concerns about the **reliability** of empirical research results are fast becoming endemic and software engineering is no exception.
- **False discoveries** and how likely published experiments report erroneous results.
- Researchers questioned the **prevalence** of reported **p-values**
- Concerns about the **variability of results** depending upon which research team performs the work.
- Some studies are **selectively published** based on preferences for particular results.
- There is both a **low probability** of discovering a **true effect** and the parameter of interest has high variance.

Evolution of Replications over Years

1994-2003 An average of 4.1 studies published per year.
2004-2009 An average of 11.7 studies published per year.
2004-2012 An average of 24.3 studies published per year.

Topics of Interest

PROMISE’18 Replication and repeatability of previous work using predictive modelling and data analytics in software engineering

International conference on Predictive Models and Data Analytics in Software Engineering

JSS’18 Replication of empirical studies and families of studies.

Journal of Systems and Software

ESEM’18 Replication of software engineering studies.

Empirical Software Engineering and Measurement
Guidelines to follow

1. Information about the original study
2. Information about the replication
3. Comparison of results to original
4. Conclusion Across Studies

1- Research Questions

A description of the research question(s) that was the basis for the original design.
2- Participants

The number of participants and any relevant characteristics of the participants.
3- Design

A graphical (or textual) description of the experimental design.
4- Artifacts

A description of and/or links to the artifacts used.
5- **Context variables**

Any important context variables that affected the design of the study or interpretation of the results
6- Summary of results

A brief overview of the major findings
1- Motivation

a description of why the replication was conducted.
2- Level of interaction

The level of interaction the replicators had with the original experimenter should be reported.
3- Changes to the original experiment

Any changes made to the design, participants, artifacts, procedures, data collected and/or analysis techniques should be discussed here.
1- Similarities in results

Replication results that supported results from the original study.
2- Differences in results

Results from the replication that did not coincide with the results from the original study.
The authors should provide a discussion of the current state of knowledge.
1- Same experiment & Same objects

Goal: Evaluating the certainty of current knowledge (i.e., confirming or disputing previous results).
1- **Same experiment & Same objects**

Example (Original Study - Deeper Model)

![Diagram showing Model Building Phase and Prediction Phase](image)

1- Same experiment & Same objects

Example (Original Study - TLEL Model)

1- Same experiment & Same objects

Example (Same Datasets)

<table>
<thead>
<tr>
<th></th>
<th>Period</th>
<th>The total number of changes</th>
<th>Average LOC</th>
<th># of modified files</th>
<th># of changes per day</th>
<th># dev. per file</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>File Change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bugzilla</td>
<td>08/1998 - 12/2006</td>
<td>4,620</td>
<td>389.8</td>
<td>37.5</td>
<td>2.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Columbia</td>
<td>11/2002 - 07/2006</td>
<td>4,455</td>
<td>125.0</td>
<td>149.4</td>
<td>6.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Eclipse JDT</td>
<td>05/2001 - 12/2007</td>
<td>35,386</td>
<td>260.1</td>
<td>71.4</td>
<td>4.3</td>
<td>14.7</td>
</tr>
<tr>
<td>Eclipse Platform</td>
<td>05/2001 - 12/2007</td>
<td>64,250</td>
<td>231.6</td>
<td>72.2</td>
<td>4.3</td>
<td>26.7</td>
</tr>
<tr>
<td>Mozilla</td>
<td>01/2000 - 12/2006</td>
<td>98,275</td>
<td>360.2</td>
<td>106.5</td>
<td>5.3</td>
<td>38.9</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>07/1996 - 05/2010</td>
<td>20,431</td>
<td>563.0</td>
<td>101.3</td>
<td>4.5</td>
<td>4.0</td>
</tr>
<tr>
<td>OSS-Median</td>
<td></td>
<td>27,909</td>
<td>310.1</td>
<td>86.7</td>
<td>4.4</td>
<td>9.4</td>
</tr>
<tr>
<td>C-1</td>
<td>10/2000 - 12/2009</td>
<td>4,096</td>
<td>-</td>
<td>16.4</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>C-2</td>
<td>10/2000 - 12/2009</td>
<td>9,277</td>
<td>-</td>
<td>19.2</td>
<td>2.4</td>
<td>2.8</td>
</tr>
<tr>
<td>C-3</td>
<td>07/2002 - 12/2009</td>
<td>3,586</td>
<td>-</td>
<td>16.6</td>
<td>2.0</td>
<td>1.3</td>
</tr>
<tr>
<td>C-4</td>
<td>12/2003 - 12/2009</td>
<td>5,182</td>
<td>-</td>
<td>12.9</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>C-5</td>
<td>10/1982 - 12/1995</td>
<td>10,961</td>
<td>303.0</td>
<td>39.0</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>COM-Median</td>
<td></td>
<td>5,182</td>
<td>-</td>
<td>16.6</td>
<td>2.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Example 1 (Replication Study)

<table>
<thead>
<tr>
<th>Project</th>
<th>Deeper Original</th>
<th>Deeper Replicated</th>
<th>TLEL Original</th>
<th>TLEL Replicated</th>
<th>DSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugzilla</td>
<td>0.6292</td>
<td>0.6348</td>
<td>0.6850</td>
<td>0.6722</td>
<td>0.6730</td>
</tr>
<tr>
<td>Columba</td>
<td>0.5606</td>
<td>0.5641</td>
<td>0.6065</td>
<td>0.6050</td>
<td>0.6090</td>
</tr>
<tr>
<td>JDT</td>
<td>0.3779</td>
<td>0.3762</td>
<td>0.4194</td>
<td>0.4125</td>
<td>0.4233</td>
</tr>
<tr>
<td>Mozilla</td>
<td>0.2215</td>
<td>0.2127</td>
<td>0.2625</td>
<td>0.2561</td>
<td>0.2582</td>
</tr>
<tr>
<td>Platform</td>
<td>0.3822</td>
<td>0.3910</td>
<td>0.4471</td>
<td>0.4381</td>
<td>0.4425</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>0.5509</td>
<td>0.5485</td>
<td>0.6052</td>
<td>0.5958</td>
<td>0.5994</td>
</tr>
<tr>
<td>Average</td>
<td>0.4537</td>
<td>0.4546</td>
<td>0.5043</td>
<td>0.4966</td>
<td>0.5009</td>
</tr>
</tbody>
</table>

2- Different experiment & Same objects

Goal: Improving the original model and reduce the internal threats to validity (minimize systematic error)
2- Different experiment & Same objects

Example (Different Model - Same Datasets)

2- Different experiment & Same objects

Example (Replication Study - Same Datasets)

<table>
<thead>
<tr>
<th>Project</th>
<th>Deeper Original</th>
<th>Deeper Replicated</th>
<th>TLEL Original</th>
<th>TLEL Replicated</th>
<th>DSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugzilla</td>
<td>0.6292</td>
<td>0.6348</td>
<td>0.6850</td>
<td>0.6722</td>
<td>0.6730</td>
</tr>
<tr>
<td>Columba</td>
<td>0.5606</td>
<td>0.5641</td>
<td>0.6065</td>
<td>0.6050</td>
<td>0.6090</td>
</tr>
<tr>
<td>JDT</td>
<td>0.3779</td>
<td>0.3762</td>
<td>0.4194</td>
<td>0.4125</td>
<td>0.4233</td>
</tr>
<tr>
<td>Mozilla</td>
<td>0.2215</td>
<td>0.2127</td>
<td>0.2625</td>
<td>0.2561</td>
<td>0.2582</td>
</tr>
<tr>
<td>Platform</td>
<td>0.3822</td>
<td>0.3910</td>
<td>0.4471</td>
<td>0.4381</td>
<td>0.4425</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>0.5509</td>
<td>0.5485</td>
<td>0.6052</td>
<td>0.5958</td>
<td>0.5994</td>
</tr>
<tr>
<td>Average</td>
<td>0.4537</td>
<td>0.4546</td>
<td>0.5043</td>
<td>0.4966</td>
<td>0.5009</td>
</tr>
</tbody>
</table>

3- Same experiment & Different objects

Goal: Identifying limitations to the generality of the conclusions (or to problems with the objects).
3- Same experiment & Different objects

Example (Original Study)

3- Same experiment & Different objects

Example (Replication Study - Different Datasets)

Introduction & Terminologies
A Set of Guidelines to Follow
Types of Replication Studies

- Same experiment & Same objects
- Different experiment & Same objects
- Same experiment & Different objects

Thank you!